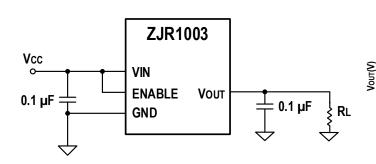


Data Sheet ZJR1003

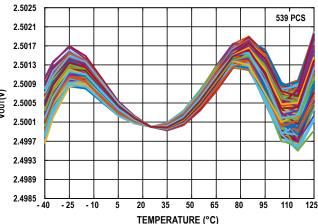
Low Noise, Low Power Precision Voltage Reference


Features

- Low noise (0.1 Hz to 10 Hz): 6.0 μV_{P-P}, 2.5 ppm_peak-peak
- Low temperature coefficient: 5 ppm/°C max
- Initial accuracy: ±0.05% max
- Quiescent current: 130 µA Shutdown current: 3 µA
- Supply voltage: V_{OUT}+ 0.3 V to 5.5 V
- Line regulation: 10 ppm/V max
- Load regulation: 10 ppm/mA max
- High output drive capability: 16 mA min
- Packages: SOIC-8/MSOP-8
- Wide temperature range: -40 °C to +125 °C
- Pin compatible with industry standard products and ZJR1000 pins

Applications

- Industrial control
- Precision data acquisition
- Optical Communication
- Precision instrument
- Smart grid
- Medical equipment
- Portable Devices


Typical Application

General Description

The ZJR1003 are a series of precision voltage references providing a variety of output voltages with very low temperature coefficient and low noise. This is ideal for applications such as precision instruments and test equipment requiring high resolution (higher than 14 bits) data acquisition. The performance of ZJR1003 is guaranteed in a wide temperature range from -40 °C to +125°C. Because of the low dropout feature of ZJR1003, the lowest supply voltage is just 300 mV higher than the output voltage. Meanwhile its maximum supply voltage can reach 15 V, which can simplify the power supply design of the system. ZJR1003 is a bandgap voltage reference, with its optimized design and trimming, the temperature coefficient is better than 5 ppm/ °C, and the initial accuracy is better than ±0.05%. This simplifies or even skip the system initial calibration for most applications. ZJR1003 provides 8-pin SOIC and MSOP packages, and are compatible with industry standard products.

Typical Characteristics

Table of contents

Features1
Applications1
General Description1
Typical Application1
Typical Characteristics1
Table of contents2
Version (Release C)
Revision History3
Pin Configurations and Function Descriptions5
Absolute Maximum Ratings6
Thermal Resistance6
Specifications
Typical Performance Characteristics
Terminology12
Temperature Coefficient12
Long-term Stability12
Thermal Hysteresis12
Line Regulation12
Load Regulation13
Theory of Operation14

Applications
ZJR1003 Basic Connections 15
Power on and Shutdown Mode 15
Supply Voltage 15
Noise Performance16
Power Dissipation16
Product Applications 17
Voltage Reference Noise to ADC Resolution 17
Generating a Negative Output Precision Voltage
Reference17
ZJR1003 Used in High-Precision Data
Acquisition Systems 18
Layout Guidelines
Layout Example 19
Outline Dimensions
Ordering Guide
Orderable Device Explanation
Related Parts

Version (Release C)¹

Revision History

April 2024 — Release C

Long-Term Stability updating at page 6 Add Figure 20, Figure 21 at page 10

July 2023 - Release B Add Figure 23

June 2023 - Release A

¹ Information furnished by ZJW Microelectronics is believed to be accurate and reliable. However, no responsibility is assumed by ZJW Microelectronics for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of ZJW Microelectronics. Trademarks and registered trademarks are the property of their respective owners.

Pin Configurations and Function Descriptions

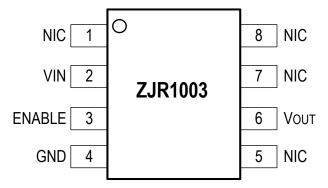


Figure 1. ZJR1003 Pin Configuration (8-lead SOIC and MSOP)

Mnemonic	Pin No.	Description	
NIC	1,5,7,8	No Internal Connection. NIC has no internal connection.	
VIN	2	Input voltage	
ENABLE	3	Enable. Drive high to enable the device. Drive low to disable the device.	
GND	4	Ground	
Vout	6	Voltage output, connected to load.	

Absolute Maximum Ratings¹

Parameter	Rating
Input Voltage	-0.2 V to 6 V
Output Short-Circuit Current to GND	±30 mA
Operating Temperature Range	-40 °C to +125 °C
Storage Temperature Range	-65 °C to +150 °C
Junction Temperature Range	-65 °C to +150 °C
Maximum Reflow Temperature ²	260 °C
Lead Temperature (Soldering, 10 sec)	300 °C
Electrostatic Discharge (ESD) 1	
Human Body Model (HBM) ²	8 kV
Charging Device Model (CDM) ³	1 kV

Thermal Resistance 6

Package Type	θ」Α	θυς	Unit
SOIC-8	158	43	°C/W
MSOP-8	190	44	°C/W

Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality. ² ANSI/ESDA/JEDEC JS-001 Compliant.

- ³ ANSI / ESDA /JEDEC JS-002 Compliant

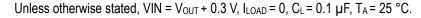
These ratings apply at 25 °C, unless otherwise noted. 1

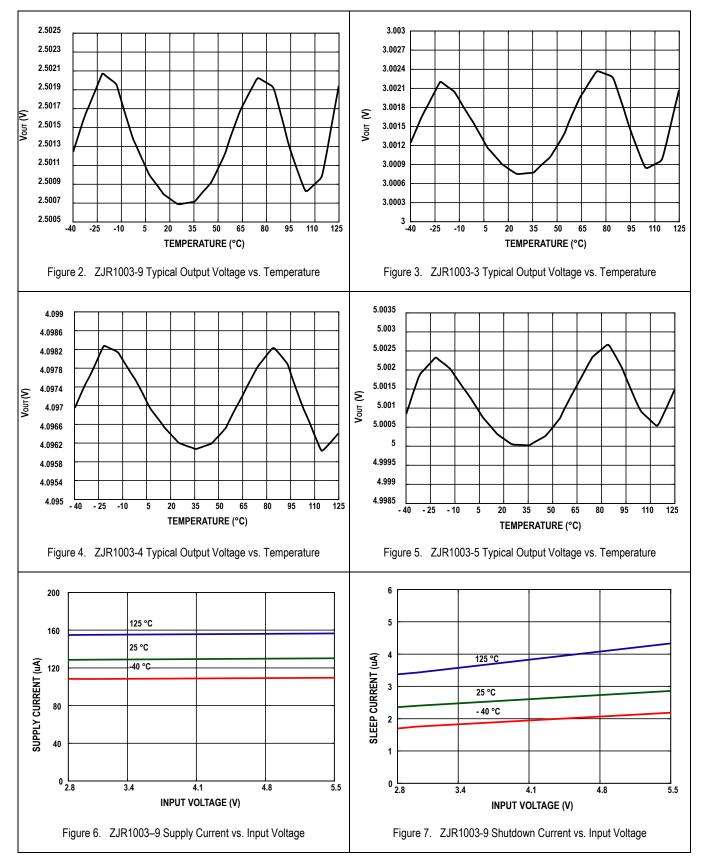
Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

² IPC/JEDECJ-STD-020 Compliant.

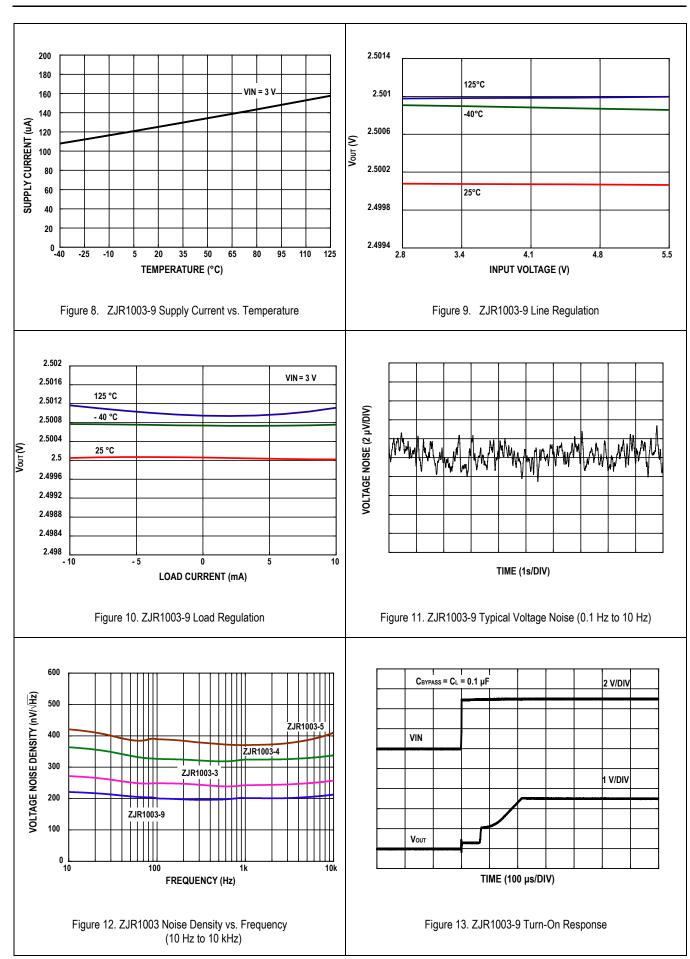
¹ Charged devices and circuit boards can discharge without detection.

 $^{^{\}rm 6}~\theta_{JA}$ addresses the conditions for soldering devices onto circuit boards to achieve surface mount packaging.

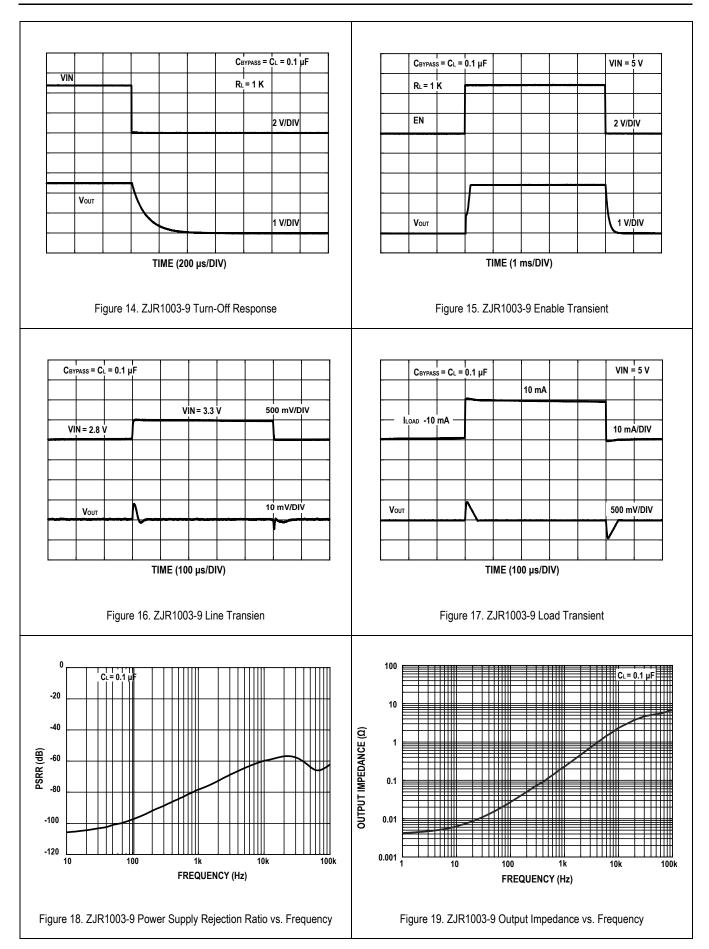

Specifications¹


The "•" denotes the specification which apply over the full specified temperature range, unless otherwise specified, VIN = V_{OUT} +0.3 V, I_{LOAD} = 0, C_L = 0.1 µF, T_A = 25 °C.

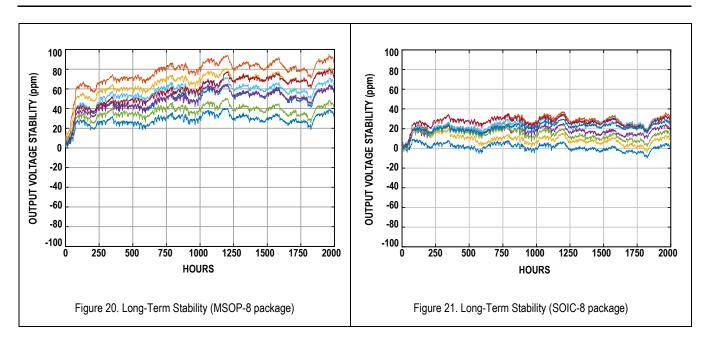
Parameter	Symbol	Conditions/Package		Min	Тур	Max	Unit
		ZJR1003-9			2.5		V
0 ()) ()(ZJR1003-3			3		V
Output Voltage	V _{OUT}	ZJR1003-4			4.096		V
		ZJR1003-5			5		V
Initial Accuracy				-0.05		+0.05	%
Temperature Coefficient	TCV _{OUT}						
B Grade A Grade			•			5 8	ppm/°C ppm/°C
Voltage Noise	enp-p	0.1 Hz to 10 Hz			2.5		ppm_peak-to-peak
		f = 1 kHz					
		ZJR1003-9			200		nV/√Hz
Voltage Noise Density	en	ZJR1003-3			250		nV/\sqrt{Hz}
		ZJR1003-4			320		nV/\sqrt{Hz}
		ZJR1003-5			308		nV/\sqrt{Hz}
Voltage Regulation							
			•		2 5	10	ppm/V ppm/V
Load Regulation		-10 mA < I _{LOAD} < 10 mA	•		1.5 6	10	ppm/mA
Supply Voltage		I_{LOAD} = 5 mA, output voltage error < 0.1 %		V _{OUT} +0.3		5.5	
Supply Current			•		130		μΑ
Shutdown Current			•		3		μA
Dropout Voltage		$I_{LOAD} = 0$	•		5		mV
		I _{LOAD} = 5 mA	•		50		mV
Enable Pin (ENABLE)		Input Current	•	-1		1	μA
		Logic High Voltage	•	2			V
		Logic Low Voltage	•			0.8	V
Short-Circuit Current		V _{OUT} = GND / VIN		16	20		mA
Ripple Rejection Ratio		Frequency = 60 Hz			-95		dB
Turn-on Settling Time		Stable to 0.1 %, C_L = 0.1 μ F			220		μs
Long-Term Stability		1000 hours, SOIC-8			16		ppm/1000 hours
		1000 hours, MSOP-8			55		ppm/1000 hours
Temperature Range		Specified Temperature Range		-40		125	°C
		Operating Temperature Range		-55		125	°C


¹ Each parameter is explained in the terminology section of this data sheet.

Typical Performance Characteristics



Data Sheet



ZJR1003

ZJR1003

Data Sheet

ZJR1003

Terminology

Temperature Coefficient

The change of output voltage over the operating temperature range is normalized by the output voltage at 25 °C, and expressed in ppm/°C as

$$dV_{OUT}/dT = \frac{V_{OUT}(max) - V_{OUT}(min)}{V_{OUT}(25) \times (T2 - T1)} \times 10^6$$

Where:

Vout (25): Output voltage at 25 °C.

 V_{OUT} (min): The lowest output voltage over temperature T1 to T2 range.

V_{OUT} (max): The highest output voltage over temperature range T1 to T2.

For ZJW Micro voltage references, temperature T1 is -40 °C, and T2 is +125 °C.

Long-term Stability

This is the measurement of the change in output voltage of the measured device at 25 °C after 1000 hours (approximately 42 days) of operation at a constant ambient temperature. Generally measured in ppm. Long-term stability is not only affected by variations in the device itself, but also by soldering and board materials. Long-term stability generally exhibits a logarithmic characteristic, therefore the change in the second 1000 hours will be much smaller than the change in the first 1000 hours.

$$LTD = \frac{V_{OUT}(t0) - V_{OUT}(t1)}{V_{OUT}(t0)} \times 10^{6}$$

where:

 $V_{\text{OUT}}(\text{t0})\text{:}$ Output voltage at 25 °C at Time 0.

Vour (t1): Output voltage at 25 °C at Time 1 after 1000 hours of operation under constant ambient temperature.

Thermal Hysteresis

The change of output voltage after the device is cycled through temperatures from +25 °C to -40 °C to +125 °C and back to +25 °C. This is a typical value from a sample of parts put through such a cycle. It is normally in ppm using the following equation:

$$TH = \frac{V_{OUT}(25) - V_{OUT}(TC)}{V_{OUT}(25)} \times 10^{6}$$

where:

V_{OUT} (25): Output voltage at 25 °C.

V_{OUT} (TC): Output voltage at 25 °C after the temperature cycle.

Line Regulation

The change in output voltage due to a specified change in input voltage. It includes the effects of self-heating. Line regulation is expressed in either percent per volt, parts per million per volt, or microvolts per volt change in input voltage, such as ppm/V.

Load Regulation

The change in output voltage due to a specified change in load current. It includes the effects of self-heating. Load regulation is expressed in either microvolts per milliampere or parts per million per milliampere, such as ppm/mA.

Theory of Operation

ZJR1003 series of precision voltage reference products is based on state-of-the-art CMOS technology, Figure 22 shows ZJR1003 internal blocks respectively. The bandgap reference is the core, which has been carefully designed and can deliver the key performances by proprietary post-package trimming. All pins have the internal protection circuit in order to make ZJR1003 reliable parts, and their ESD level reaches 8 kV HBM.

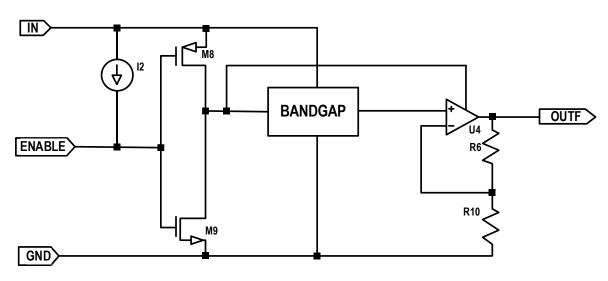
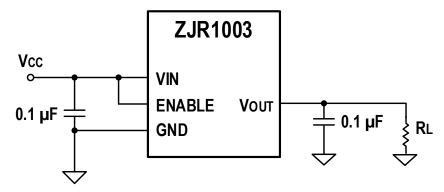
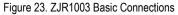


Figure 22. Simplified Schematic of ZJR1003

Applications

ZJR1003 Basic Connections


Voltage references, including ZJR1003, normally require a capacitor at the output between OUTF and GND. Figure 23 is the basic connection of ZJR1003. Other than a 0.1 µF capacitor at the output, no further component is needed for normal operation.


However, in actual system, the power supply may change rapidly. Adding a 1 μ F to 10 μ F capacitor at the input can help the performances of the voltage reference. An additional 0.1 μ F capacitor in parallel can reduce power supply noise further.

The output capacitance ranges from 0.1 μ F to 10 μ F. Too big capacitive load can cause output oscillation. Capacitor equivalent series resistance (ESR) within 1.5 Ω is recommended to ensure its stability. Meanwhile, larger output capacitor results in longer turn-on time.

Capacitance value depends on the load of the voltage reference, source or sink current et al. New SAR ADC, such as ZJC2000, requires its voltage reference can source and sink current.

It is recommended to use surface-mounted ceramic capacitors (such as X5R, X7R). If an electrolytic capacitor is used at the output, a 0.1 µF ceramic capacitor should be placed in parallel to reduce the overall ESR at the output. In addition, the capacitors' operating temperature range should be wider, or at least the same as the system's temperature range.

Power on and Shutdown Mode

Figure 13 shows the turn-on process of ZJR1003. The value of the load capacitance affects the turn-on time. In general, the larger the load capacitance, the longer the settling time. Settling to higher accuracy sees exponentially longer turn-on time.

For power sensitive high precision applications, ZJR1003 have shutdown mode, which has the supply current of 3 µA cross the specified temperature range. Drive pin 3 (ENABLE) low, the part will enter shutdown mode & high will be in normal operation as can be found in Figure 18. Leave pin 3 unconnected (there is a weak internal pull-up circuit) or connect to IN, ZJR1003 will be in normal operation. For applications operating in complex environments, it is recommended to connect a 1 kΩ resistor in series and pull it to pin 2 VIN to enhance system reliability.

Supply Voltage

The supply voltage of ZJR1003 range from 300 mV higher than the output voltage to 5.5 V. It is recommended to power ZJR1003 by linear power supplies, such as LDO, in order to get high performances.

Noise Performance

ZJR1003 have very low output noise. The noise of ZJR1003-9 is typically within 2.5 ppm_peak-to-peak over the 0.1 Hz to 10 Hz band. The noise measurement is made with a band-pass filter made of a high-pass filter with a corner frequency at 0.1 Hz and a low-pass filter with a corner frequency at 10 Hz.

The noise measurement is made with a band-pass filter made of a high-pass filter with a corner frequency at 0.1 Hz and a low-pass filter with a corner frequency at 10 Hz.

Power Dissipation

ZJR1003 is low power dissipation devices with a typical supply current of 130 µA. In case of heavy load, it is necessary to calculate the power dissipation of the device, and take into account the performance changes caused by it. The temperature of the device increases according to the equation below.

$$T_J = P_D \times \theta_{JA} + T_A$$

where:

T_J = Junction temperature (°C)

T_A = Ambient temperature (°C)

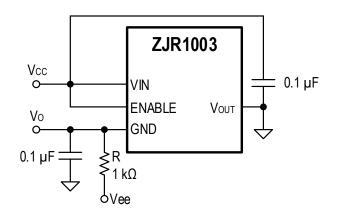
P_D = Power dissipated (W)

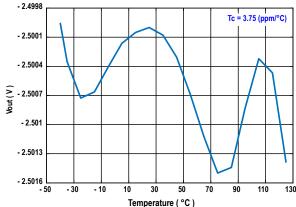
 θ_{JA} = Junction-to-ambient thermal resistance (°C/W)

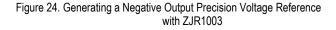
The junction temperature of ZJR1003 must not exceed the absolute maximum rating of 150 °C.

Product Applications

Voltage Reference Noise to ADC Resolution


In general, the voltage reference's 0.1 Hz to 10 Hz noise should be within ADC's 1/2 LSB. With the same resolution, the larger the fullscale voltage, the lower the noise requirement to the voltage reference as can be found in Table 1. ZJR1001 and ZJR1002 a able to be used as 16-bit ADC voltage reference.


Desclution (hit)	0.1 Hz to 10 Hz Noise (μV_{P-P})			
Resolution (bit)	2.5 V full scale	5 V full scale		
8	4,882.8	9,765.6		
10	1,220.7	2,441.4		
12	305.2	610.4		
14	76.3	152.6		
16	19.1	38.1		
18	4.8	9.5		


Table 1. ADC Resolution vs. Voltage Reference Noise

Generating a Negative Output Precision Voltage Reference

Sometimes a system needs to provide a negative output precision voltage reference. The circuit in Figure 24 can meet this goal. Its advantage is that the circuit uses very few external components, and these external components do not affect the output performance. In verification, we used a ZJR1003-9 with power supplies of $\pm 5 \text{ V}$ (Vcc = 5 V, Vee = -5 V). It's important to note the current and power consumption of the resistor R connected to the pin GND. If its resistance is R, the current flowing through it is (Vee-V₀)/R, and the power consumption is (Vee - V₀)² / R. Especially when the voltage difference (Vee-V₀) is large, select a resistor that can withstand the calculated power consumption. However, this resistor does not affect the temperature coefficient of the negative output precision voltage reference. Figure 25 shows the lab verification results.

ZJR1003 Used in High-Precision Data Acquisition Systems

Designing 16-bit and 18-bit programmable data acquisition systems (DAS) with high common-mode rejection (CMRR) is challenging. This requires a high-performance voltage reference to ensure the noise and performance over temperature of the data acquisition system, and in some cases, its long-term stability. ZJW, building on its robust portfolio of high-performance signal chain products, has launched a reference design for a high CMRR, programmable data acquisition system with up to 18-bit accuracy. The low noise and temperature drift of ZJR1003, which is better than 5 ppm/°C, lays the foundation for ensuring the system's performance. The materials for this reference design are available on zjwmicro.com.

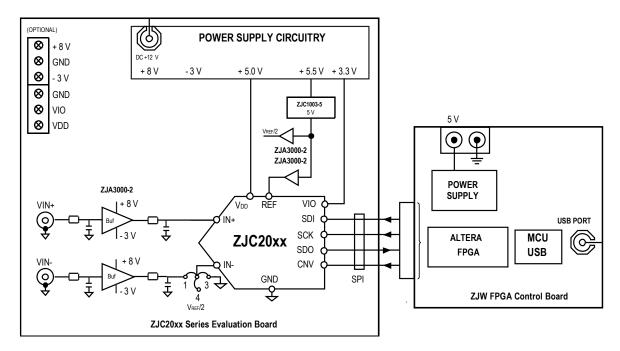


Figure 26. ZJR1003 Used in up to 18-bit Accuracy Precision DAS

Layout Guidelines

- Place the power-supply bypass capacitor as closely as possible to the supply and ground pins. The recommended value of this bypass capacitor is from 1 µF to 10 µF. If necessary, additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies.
- The output must be decoupled with a bigger than 0.1 μF capacitor. For better noise performance, the recommended ESR on the output capacitor is from 1 Ω to 1.5 Ω. For even lower noise, a larger capacitor in parallel or an RC filter can be added.
- Use large area ground plane if possible. Keep fast-changing or high-frequency interference signals far from ZJR1003.

Layout Example

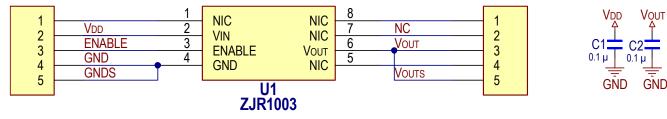


Figure 27. ZJR1003 Evaluation Board Schematic

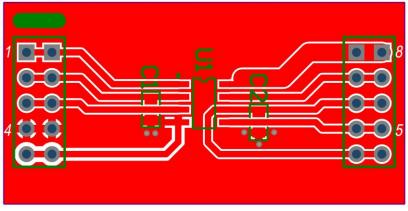
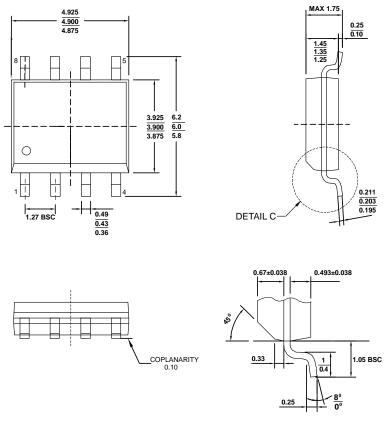



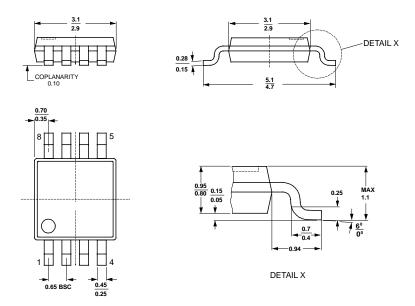
Figure 28. ZJR1003 Evaluation Board Layout (Top Layer)

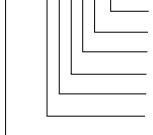
Figure 29. ZJR1003 Evaluation Board Layout (Bottom Layer)

Outline Dimensions

DETAIL C

Figure 30. 8-Lead SOIC Package Dimensions shown in millimeters




Figure 31. 8-Lead MSOP Package Dimensions shown in millimeters

Ordering Guide

Model	Output Voltage (V)	Package	Orderable Device	Max TempCo (ppm/°C)	Temperature Range (°C)	External Package
		SOIC - 8	ZJR1003-9BSABT	5	- 40 至+ 125	Tube
		SOIC - 8	ZJR1003-9BSABR	5	- 40 至+ 125	13" Reel
		MSOP - 8	ZJR1003-9BUABT	5	- 40 至+ 125	Tube
ZJR1003-9	2.5	MSOP - 8	ZJR1003-9BUABR	5	- 40 至+ 125	13" Reel
		SOIC - 8	ZJR1003-9ASABT	8	- 40 至+ 125	Tube
		SOIC - 8	ZJR1003-9ASABR	8	- 40 至+ 125	13" Reel
		MSOP - 8	ZJR1003-9AUABT	8	- 40 至+ 125	Tube
		MSOP - 8	ZJR1003-9AUABR	8	- 40 至+ 125	13" Reel
		SOIC - 8	ZJR1003-3BSABT	5	- 40 至+ 125	Tube
		SOIC - 8	ZJR1003-3BSABR	5	- 40 至+ 125	13" Reel
		MSOP - 8	ZJR1003-3BUABT	5	- 40 至+ 125	Tube
	2	MSOP - 8	ZJR1003-3BUABR	5	- 40 至+ 125	13" Reel
ZJR1003-3	3	SOIC - 8	ZJR1003-3ASABT	8	- 40 至+ 125	Tube
		SOIC - 8	ZJR1003-3ASABR	8	- 40 至+ 125	13" Reel
		MSOP - 8	ZJR1003-3AUABT	8	- 40 至+ 125	Tube
		MSOP - 8	ZJR1003-3AUABR	8	- 40 至+ 125	13" Reel
		SOIC - 8	ZJR1003-4BSABT	5	- 40 至+ 125	Tube
		SOIC - 8	ZJR1003-4BSABR	5	- 40 至+ 125	13" Reel
	4.096	MSOP - 8	ZJR1003-4BUABT	5	- 40 至+ 125	Tube
7154000 4		MSOP - 8	ZJR1003-4BUABR	5	- 40 至+ 125	13" Reel
ZJR1003-4		SOIC - 8	ZJR1003-4ASABT	8	- 40 至+ 125	Tube
		SOIC - 8	ZJR1003-4ASABR	8	- 40 至+ 125	13" Reel
		MSOP - 8	ZJR1003-4AUABT	8	- 40 至+ 125	Tube
		MSOP - 8	ZJR1003-4AUABR	8	- 40 至+ 125	13" Reel
		SOIC - 8	ZJR1003-5BSABT	5	- 40 至+ 125	Tube
		SOIC - 8	ZJR1003-5BSABR	5	- 40 至+ 125	13" Reel
	5 -	MSOP - 8	ZJR1003-5BUABT	5	- 40 至+ 125	Tube
		MSOP - 8	ZJR1003-5BUABR	5	- 40 至+ 125	13" Reel
ZJR1003-5		SOIC - 8	ZJR1003-5ASABT	8	- 40 至+ 125	Tube
		SOIC - 8	ZJR1003-5ASABR	8	- 40 至+ 125	13" Reel
		MSOP - 8	ZJR1003-5AUABT	8	- 40 至+ 125	Tube
		MSOP - 8	ZJR1003-5AUABR	8	- 40 至+ 125	13" Reel

Orderable Device Explanation

$\mathsf{ZJ}\underline{X}\mathsf{X}\mathsf{X}\mathsf{X} \xrightarrow{X} \underline{X} \xrightarrow{X} \underbrace{X} \xrightarrow{X} \underbrace{X} \underbrace{Q1}$

Q1: Automotive Grade

External Package: T = tube; R = reel

Temperature range: A = - 40 °C to 125 °C Automotive Grade 1; B = -40 °C to 125 °C; E = - 40 °C to 85 °C Number of Pins: T = 6, A = 8; B = 10; D = 14; E = 16; P = 20;

Package type: S = SOIC; U = MSOP, TSSOP, SOT; T = DFN, QFN

Grade: B grade is better than A grade

Base: R = Voltage reference; A = Amplifier; C = Data Converter; G = Switch and Multiplexer

Related Parts

Part Number	Description	Comments				
ADC						
ZJC2000/2010	18-bit 400 kSPS/200 kSPS SAR ADC	Fully differential input, SINAD 99.3 dB, THD -113 dB				
ZJC2001/2011	16-bit 500 kSPS/250 kSPS SAR ADC	Fully differential input, SINAD 95.3 dB, THD -113 dB				
ZJC2002/2012		Pseudo-differential unipolar input, SINAD 91.7 dB, THD -105 dB				
ZJC2003/2013	16-bit 500 kSPS/250 kSPS SAR ADC	Pseudo-differential bipolar input, SINAD 91.7 dB, THD -105 dB				
ZJC2004/2014		Pseudo-differential unipolar input, SINAD 94.2 dB, THD -105 dB				
ZJC2005/2015	18-bit 400 kSPS/200 kSPS SAR ADC	Pseudo-differential bipolar input, SINAD 94.2 dB, THD -105 dB				
ZJC2007/2017		Pseudo-differential unipolar input, SINAD 85 dB, THD -105 dB				
ZJC2008/2018	14-bit 600 kSPS/300 kSPS SAR ADC	Pseudo-differential bipolar input, SINAD 85 dB, THD -105 dB				
ZJC2100/1-18	18-bit 400 kSPS/200 kSPS 4-ch differential SAR A					
ZJC2100/1-16	16-bit 500 kSPS/250 kSPS 4-ch differential SAR A					
ZJC2102/3-18	18-bit 400 kSPS/200 kSPS 8-ch pseudo-differentia					
ZJC2102/3-16	16-bit 500 kSPS/250 kSPS 8-ch pseudo-differentia					
ZJC2102/3-14	14-bit 600 kSPS/300 kSPS 8-ch pseudo-differentia					
ZJC2104/5-18	18-bit 400 kSPS/200 kSPS 4-ch pseudo-differentia					
ZJC2104/5-16	16-bit 500 kSPS/250 kSPS 4-ch pseudo-differentia					
DAC	· · ·					
ZJC2541-18/16/14	18/16/14-bit 1 MSPS single channel DAC with	Power on reset to 0 V (ZJC2541) or VREF/2 (ZJC2543), 1 nV-S glitch,				
ZJC2543-18/16/14	unipolar output	SOIC-8/MSOP-10/DFN-10 packages				
ZJC2542-18/16/14	18/16/14-bit 1 MSPS single channel DAC with	Power on reset to 0 V (ZJC2542) or V _{REF} /2 (ZJC2544), 1 nV-S glitch,				
ZJC2544-18/16/14	bipolar output	SOIC-14/TSSOP-16/QFN-16 packages				
Amplifier						
	Single/Dual/Quad 36 V low bias current	3 MHz GBW, 35 µV max Vos, 0.5 µV/°C max Vos drift, 25 pA max Ibias,				
ZJA3000-1/2/4	precision Op Amps	1 mA/Amplifier, input to V-, RRO, 4.5 V to 36 V				
	Single/Dual/Quad 36 V low bias current	3 MHz GBW, 35 μV max Vos, 0.5 μV/°C max Vos drift, 25 pA max Ibias,				
ZJA3001-1/2/4	precision Op Amps	1 mA/Amplifier, RRO, 4.5 V to 36 V				
		7 MHz GBW, 35 V/µS SR, 50 µV max Vos, 1 µV/°C max Vos drift,				
ZJA3512-2/4	Dual/Quad 36 V 7 MHz precision JFET Op Amps	2 mA/Amplifier, RRO, 4.5 V to 35 V				
		CMRR 105 dB min (G = 1), 25 pA max Ibias, 25 µV max Vosi, gain error 0.001 %				
ZJA3600/1	36 V ultra-high precision in-amp	max (G = 1), 625 kHz BW (G = 10), 3.3 mA/Amplifier, ±2.4 V to ±18 V, - 40 °C				
		to 125 °C specified				
7 14 20 20 /0		CMRR 93 dB min (G = 10), 0.5 nA max Ibias, 125 µV max Vosi, 625 kHz BW				
ZJA3622/8	36 V low cost precision in-amp	(G = 10), 3.3 mA/Amplifier, ±2.4 V to ±18 V				
7140044 7140000	36 V ultra-high precision wider bandwidth	CMRR 120 dB min (G = 10), 25 pA max Ibias, 25 μV max Vosi, 1.2 MHz BW				
ZJA3611, ZJA3609	precision in-amp (min gain of 10)	(G = 10), 3.3 mA/Amplifier, ±2.4 V to ±18 V, - 40 °C to 125 °C specified				
7 14 00 70/7	Low power, G = 1 Single/Dual 36 V difference	Input protection to ± 65 V, CMRR 104 dB min, Vos 100 μ V max, gain error				
ZJA3676/7	amplifier	15 ppm max, 500 kHz BW, 330µA, 2.7 to 36 V				
Voltage Reference	6					
7 104000		V _{OUT} = 1.25/2.048/2.5/3/4.096/5 V, 5 ppm/°C max drift - 40 °C to 125 °C, ±0.05 %				
ZJR1000	15 V supply precision voltage reference	initial error				
ZJR1001						
ZJR1002	5.5 V low power voltage reference	V _{OUT} = 2.5/3/4.096/5 V, 5 ppm/°C max drift - 40 °C to 125 °C, ±0.05 % initial				
ZJR1003	(ZJR1001 with noise filter option)	error, 130 μA, ZJR1001/2 in SOT23-6, ZJR1003 in SOIC/MS-8				
Switches and Mu	ltiplexers					
7104420/4420	26 \/ foult protection 0.4/dual 4.4 multiplane	Protection to \pm 50 V power on & off, latch-up immune, Ron 270 Ω , 14.8 pC				
ZJG4438/4439	36 V fault protection 8:1/dual 4:1 multiplexer	charge injection, t _{oN} 166 nS, 10 V to 36 V				